In theory, we all know that humanity is part of the Earth’s ecosystem. When we impact the system, we impact ourselves. But knowing is one thing, feeling it is another. Sure, we know the global system of which we are part is ever hotter. But lately a lot of Americans, including myself, have gotten a real feel for it.
Over the last several days, the earth has suffered the hottest days in recorded history. On July 3rd, we set a record of 17.01°C, or 62.62°F. That was calculated by taking into account the average temperatures of the land, the oceans, the poles, and the night and day cycles.
But the record didn’t last. On July 4th, there was a new record, 17.18°C this time.
And then on July 6th, yet another record: this time 17.23°C.
What makes this all more remarkable, and more alarming, is that Antarctica is in the heart of its winter season. It should be helping to keep things cooler. Well, to be fair, it probably is. But it’s not enough to overcome the stress that we’re putting on the system.
My Very Hot Home
Coincidentally, our central air conditioning pooped out on July 1st. It was the start of a weekend and, when we called the air conditioner repair people, they gave us a number that was only for “emergencies.” What is an emergency, however? They didn’t define the term.
I thought maybe emergencies were for when there’s a bedridden elderly person in an AC-less house. So, we didn’t call. Saturday night was a bit rough sleeping in a 90°F bedroom, but we managed. On Sunday, I toughed it out at home while C went to work. It reached 91°F in the house with a “feels like” index of 100+ outside. Hot enough that it felt as if the air were closing in, as if I could somehow see the heat itself in a darkened room. And not a “dry heat,” of course. We live in a rainforest (without much rain, lately). Such is Florida.
Sunday night was tougher than Saturday night. The heat was more pervasive. All the objects in the house were hot as well. There was no more residual coolness in the furniture. The bed itself was hot. Thermodynamics, baby.
We called the air conditioning folks on Monday. The woman on the phone half scolded and half laughed. “When your AC goes off on a hot Florida summer day, it’s an emergency no matter who you are,” she said. We didn’t argue. A guy came, replaced a capacitor, and had the AC fixed in about 10 minutes.
Just in time. It was Monday, the hottest day in recorded history (at the time).
To Concentrate the Mind
We are in a system that is getting hotter by the year and, lately, by the day. The most recent record won’t hold, not unless there’s a nuclear war or supervolcano explosion or some other disaster that would be worse than the global warming itself.
It takes a lot for us humans to give up our self-centered foolishness, to stop our inane but often deadly chimp-like bickering among ourselves. It takes a lot to pull us together into a single human tribe. A deadly pandemic certainly couldn’t do it. Indeed, in the U.S., it only intensified our hominid nescience.
But if we could bring all of humanity together into an AC-less Florida amid high humidity and feels-like temperatures of 107°F and keep everyone here until we collectively figured out how to properly address global warming, maybe we’d finally get ‘er done. No more excuses or half measures or procrastination.
Maybe we would finally become avid and careful systems thinkers. Our minds would be concentrated as our bodies sweltered. We would realize that there’s no easy answer to solving the issue of global warming. It’s a system, after all. But we’d soon come up with compromises on a solution that would require sacrifice from everyone, a solution that would please no one but would stand the best chance of getting something real done.
At least, that’s the pipedream. The fevered dream of a hot man lying on a hot sofa under a blurred fan blowing hot air. A man who knows with a palpable certainty that it could be even worse. No, that it will be even worse. And that it is already worse for millions if not billions of people living with far few cooling resources than we have.
The AC is back on for now and for us.
But the memory of just a couple of days without AC will live on a while. It’s just a prelude. And a reminder that when you punch the planet, the planet punches back.
Writing energy scenarios is about as hip as writing science fiction about time travel or Moon colonies. Energy scenarios are, after all, the original business scenarios. They are the vanilla of ice creams, the beige of home decorating, the Honda Accord of automobiles.
Scenarios actually began, for the most part, in the energy industry because, in a crazy and shifting world, that industry has always needed to take a long-term view and make long-term investments. That’s why so many people in that industry give off a vibe that is weirdly geeky as well as stodgy and superior. It must be the cross-breeding of engineers and geologists, gutsy wildcatters, fat-cat corporate diplomats, egg-headed forecasters and corrupt marketers.
Perhaps I picked up the energy bug from the study of scenarios in general and some exposure to energy companies. At any rate, I have been thinking and reading about such scenarios for years, and today they are inextricably linked to climate change. So, here are some my recent thoughts all nicely wrapped up in four scenarios.
Year 2032 Climate Change Scenarios
Scenario One: So Far, So Good
Assumptions: lots of green energy as well as geoengineering
By 2032, intelligent geoengineering is no longer controversial. In truth, rightly or wrongly, it has gotten some of the credit for keeping the world cooler than some had predicted it would be.
Some of the credit has gone to the United Nations, which formed the first coalitions of countries that negotiated a sulfate aerosol program that started off very modestly and then grew moderately more ambitious as various nations became comfortable with the technologies.
“We had to find a global approach to geoengineering,” said the Secretary-General of the United Nations. “Unilateral approaches could have caused international conflicts and dangerous unilateral actions.”
Another form of geoengineering, direct carbon capture, has been driven not by the UN but by a large group of nonprofits allied with private investors. After a number of major technological breakthroughs, experts now project that that within 20 years, they will be able to absorb over 30% of the carbon that has been dumped into the atmosphere over the last 100 years.
Then there are the global reforesting efforts, which are sometimes viewed as a “natural” type of geoengineering. There are multiple companies, some of them non-profits, using large squads of drones to conduct fast and effective reforesting.
The trend emerged in 2022 when AirSeed Technologies started using artificial intelligence to find areas in need of trees and fired seed pods from the sky with drones. Even at the time, the drones were reportedly able to plant over 40,000 seed pods per day, far faster and cheaper than via other methods of reforesting. Today, the number has moved past a half million per day.
An ambitious project has emerged as the reforestation companies have started to run out of promising acreage to plant. The new plan is to partner with new desalination enterprises in northern Africa in order to reforest swaths of the Sahara. This is an extension of project begun in 2007 when the African Union decided to build a “Great Green Wall” in hopes of restoring 100 million hectares of land between Senegal in the west and Djibouti in the east. The idea was to create a 15-kilometer-wide and 8,000-kilometer-long mosaic of trees, vegetation, grasslands and plants.
In every case of geoengineering, critics has emerged to warn of dire consequences. The sulfate aerosol program, they warn, may yet have an unpredictable impact since no one can accurately model climate patterns. The carbon capture programs are still unproven, and the reforestation efforts could do more harm that could.
One climatologist states, “If reforestation results in more vast, uncontrolled forest fires, as seems likely, then the process will only serve to add carbon to the air as oppose to remove it, making global warming worse.”
So far, however, these controlled geoengineering initiatives along with the fast spread of green energy sources seems to be working on level.
“So far, so good,” says the the UN Secretary-General. “Yes, some of these initiatives may not pan out. Yes, there are some potential dangers, but it’s best if we engage in these programs in controlled, internationally ordered way when possible.”
To which one critic has said, “Oh, sure, making huge mistakes via unwieldy global bureaucracies is always better. Sure it is.”
Scenario Two:Exponential Green
Assumptions: lots of green energy and little geoengineering
By the year 2020, solar photovoltaics were down to just 5.7 cents per kWh and were seen as less costly than fossil fuels. And, by 2025, the energy storage problem was well on its way to being solved via a combination of new types of batteries, efficiently converted hydrogen, and fuel cells. Investing in other fuel sources started to look like a bad investment, which meant the lower costs came even more quickly thanks to new investments.
But today, in the year 2032, it’s not all about the photovoltaics. Wind energy has also become very inexpensive, and smaller, more modular nuclear plants have made nuclear energy more price competitive. In addition, several small and still experimental nuclear fusion plants have come online.
Most new homes in the U.S. are sold with solar panels and a collection of fuel cells for storing any energy that doesn’t go directly to the electric grid. In addition, most windows are installed with clear carbon nanotube films that can reflect and collect solar energy, depending on the needs of the home. There’s also a big business in retrofitting older homes.
This means that a growing number of energy consumers have become energy producers or energy neutral, a situation that has continued to annoy energy utilities, especially after several decades of slowing energy usage among home owners in the U.S.
There have also been advances in wireless energy delivery. The most prevalent technologies are based on lasers and magnetically coupled resonance, allowing a wide range of wireless devices to run in households without the need for wires and plugs. But the largest benefits stem from applications that allow neighborhood homes to share solar energy via ad hoc, computer-controlled and wireless grids.
Renewable energy is now estimated to make up 65% of all energy generated in the world. “We expect to the U.S. to hit 95% renewable energy by 2040,” said one utilities CEO. “It represents an amazing achievement. While humanity hasn’t exactly ‘solved’ its energy problems, it feels like we’re on the road to a sustainable future. As an industry, we’re now looking at other markets where we can be equally successful, especially the transfer of high-bandwidth information via utility infrastructures.”
The world hasn’t solved global warming but most experts are optimistic that humanity will be able to cope without the necessity of risky geoengineering projects.
Scenario Three:Desperate Times
Assumptions: little green energy and lots of geoengineering
Global warming has hit humanity harder than most of the experts predicted. Back in 2022, Nature reported, “The negative impacts of climate change are mounting much faster than scientists predicted less than a decade ago.” It drew this conclusion from Climate Change 2022: Impacts, Adaptation and Vulnerability, a dire but well documented report from the United Nations climate panel.
What occurred in India and Pakistan shortly thereafter only underscored the point. In May 2022, nearly an eighth of the people on the planet found themselves struggling to endure a relentless heat wave. India had just gone through the hottest April in 122 years, which followed the hottest March on record. Pakistan didn’t get off much easier, encountering its hottest April in 61 years. In Jacobabad, Pakistan, temperatures rose above 120 degrees Fahrenheit.
During the heat wave, there was so much demand on the electrical grid that there were power outages for two-thirds of Indian households. Meanwhile in Pakistan, outages were cutting off power when people needed cooling the most, and many families lost running water without electricity.
This was just the beginning. By the mid-2020s, India and Pakistan were regularly besieged by murderous heats waves and droughts. That’s when the two nations, which had long been enemies, joined forces to implement the most ambitious and controversial geoengineering project in human history.
Starting in 2026, they began using high altitude jets so spread sulfate aerosols into the stratosphere with the goal of reflecting away sunlight. Of course, this resulted in a planetary effect that was greeted by outrage in some nations, gratitude in others. Russia almost immediately engaged in nuclear saber rattling, with its president warning, “This is an attack on Russia itself, threatening to make our winters longer, our growing seasons shorter and our storms more destructive. We will not stand idly by as rogue nations assault our food supplies and starve our citizens.”
Meanwhile, India and Pakistan as well as many other nations argued that climate change was the result of trends brought about by Western nations that had no right to inflict existential harm on their countries.
In the U.S., many took the side of India and Pakistan. One Kansas farmer stated, “We’re just glad somebody’s trying something. The droughts have been brutal the last few years, and the cost of irrigation is through the roof. It’s not just us farmers, either. It drives up the cost of food for everyone. Throwing some dust high up in the sky to cool things off a little seems like the commonsense thing to do to me.”
Not everyone agreed. Some climatologists warned that India and Pakistan were not being patient enough and might well overshoot the mark, wreaking even greater havoc on the global environment. “This could end in the kind of wild swings in global temperatures that do far more harm than good,” one warned.
Scenario Four:Hot, Hotter, Hottest
Assumptions: Little green energy and little geoengineering
In the year 2032, green energy has hit the flatter part of S-curve in a major way. The energy storage technologies never quite worked out, so countries have stuck with tried-and-true natural gas even while slowly building nuclear plans hindered by cost overruns. Engineers have done a pretty good job of making automobiles more fuel efficient, not just through better batteries but the more efficient engineering of all the other components, especially the not-yet-dead combustion engine. Most cars, after all, still run at least partly on petroleum.
Fully 55% of all energy production is still based on fossil fuels (only about 5 percentage points of improvement from 2021). But with China and India and growing parts of the African continent still ramping up their economies and energy usage, there’s even more trepidation about global warming. The scientific news has dismal in the shadow of massive and deadly heatwaves, droughts, forest and bush fires, super storms and ever more cases of daytime flooding in coastal cities. Many have given up hope, saying we’re already past a point of no return for high rates of global warming.
This problem has set the stage for a carbon tax that is expected to be implemented by all G25 countries in 2033 (though some U.S. politicians are still promising to withdraw from the pact if elected) . The funds will be mostly allocated to three areas: 1) increasing the reliability of renewable technologies to the point where natural-gas-using peaker plants are no longer needed , 2) greater energy conservation regulations in all forms of engineering, and 3) smaller, cheaper and safer nuclear plants.
“Look,” says one energy guru, “we’ve made progress over the last 20 years in terms of bringing down the costs of renewables, but they haven’t grown at the exponential rate some predicted. Still, global warming has finally gotten bad enough – and the technology good enough – for us to make a global push. We predict that if the political coalition holds, then by 2050 we can get things down to just 35% fossil fuels and the rest nuclear and renewables. Is it as good as we hoped? No. Are we going to suffer from even worse global warming? Yes. But half a loaf is better than none.”
Given the slow pace of progress, more and more nations are developing geoengineering strategies, but little has been implemented. Large-scale geoengineering initiatives remain controversial and are still being debated in the United Nations and elsewhere.
Concluding Comments
Which of these scenarios is most likely? I don’t know. The one I’d like to see most is “Exponential Green” but it’s hard to say how quickly green energy will grow and, even assuming exponential growth for now, when the trend will slow down and hit the S-curve.
We may need to add geoengineering to the mix in order to avoid disaster, but geoengineering comes with its own risks. Thing can and often do go wrong. Engineering solutions can result in unforeseen problems. If we do need to engage in geoengineering at a large scale, I hope it’ll look more like “So Far, So Good” rather than “Desperate Times.”
The best we can do, I think, is help bring the most positive of the scenarios to fruition. Even if they don’t work out, we will have spent more days in hope than despair. There’s something to be said for active optimism.